
Michael Delzer, KK Verma, Evan Chisholm
Mar 28, 2022

Costs and Benefits of .NET Application
Migration to the Cloud v2.0

A Guide to Cloud-Based Modernization of .NET Applications

Container Workload Migration, DevOps & Applications

Image credit: ImagesRouges

https://stock.adobe.com/contributor/207183360/imagesrouges?load_type=author&prev_url=detail
https://gigaom.com/analyst/delzer-michael/
https://gigaom.com/analyst/verma-kaushal/
https://gigaom.com/analyst/evan-chisholm/
https://gigaom.com/research/topic/container-workload-migration/
https://gigaom.com/research/topic/dev-ops/

Costs and Benefits of .NET Application
Migration to the Cloud
A Guide to Cloud-Based Modernization of .NET Applications

Table of Contents

Executive Summary1

Digital Transformation Is Being Driven by the Need for Modernization2

Options and Benefits for Application Modernization3

Comparing PaaS Offerings For Migration4

Field Test Findings, Migration Benefits and TCO Analysis5

Conclusion6

Appendix7

About Michael Delzer8

About KK Verma9

About Evan Chisholm10

About GigaOm11

Copyright12

Costs and Benefits of .NET Application Migration to the Cloud v2.0 2

1. Summary

Thousands of legacy applications written using development frameworks such as ASP.NET are still
being used by organizations, often running in on-premises environments. At the same time, many
organizations have been moving to cloud computing as part of their digital transformation strategies.
The COVID-19 pandemic has accelerated these digital transformation initiatives and increased cloud
adoption as organizations have had to evolve business models to survive. They have augmented and
transformed their existing applications to modern, cloud-based platforms to increase customer
engagement, streamline operations, support a remote workforce, and lower costs.

Ripping and replacing applications is no longer feasible, and it is becoming increasingly difficult to
justify for organizations struggling to cope with shrinking budgets. Technology decision makers need
to decide what to do with these legacy applications. Three main choices are available: maintain the
status quo and do nothing; migrate and modernize the applications to a modern, cloud-based
environment; or rewrite and replace them. While the third option might appear to be the optimal
solution at first glance, the overheads in terms of the effort, time, and cost required to rewrite what
could amount to thousands of applications may not always be the best approach.

To help technology decision makers understand some of the dynamics behind modernizing
applications, we conducted a field test to assess the benefits and costs of application migration. This
is a repeat of a test that we ran last year, as we wanted to ensure that migrating legacy applications
was still a feasible option. The field test walks through a migration scenario and evaluates its costs,
performance, and benefits. The results were similar to the previous test, and they reinforced the
following:

• Significant cost savings can be achieved by migrating applications to the cloud from on-premises
infrastructures.

• Traditional .NET applications can benefit from such migration without refactoring underlying code.

• The Microsoft Azure solution offered a potential total cost of ownership (TCO) savings of up to
54% over running on-premises and 35% over running on AWS.

• Streamlined operations, simplified administration, and proximity to advanced cloud services are
additional benefits.

• Built-in tools for Visual Studio and MSSQL Manager provide ease of use for database and
application migrations.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 3

For an exercise of this nature, it is critical to use legacy applications for the migration to the cloud, as
this is a scenario that many organizations find themselves in, with the need to balance the
application’s requirements against the potential advantages of the cloud.

The field study looked specifically at .NET applications, which allowed different approaches to
migration to be assessed, looking at the advantages and disadvantages of each. We discovered that
moving to Microsoft Azure has a measurable TCO advantage over Amazon Web Services—with cost
savings of 35% when applying Azure Hybrid Benefit (AHB) licensing—and that Azure offers additional
benefits in terms of ease of migration. (Figure 1)

Figure 1. Three-Year Total Estimated Operating Cost

We concluded that any cloud migration frees up considerable time and resources to work on more
strategic tasks that drive value to the business rather than maintaining resource-heavy applications.
As a result, we can say that modernization may be viewed as an imperative element of a forward-

Costs and Benefits of .NET Application Migration to the Cloud v2.0 4

thinking application strategy. The best starting point is to evaluate existing applications and determine
the best migration strategy for each, based on priority.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 5

2. Digital Transformation Is Being Driven by the Need for
Modernization

Digital transformation initiatives have been underway for the last few years, with many organizations
running multi-year strategies. COVID-19 has accelerated many of these strategies but has created a
conundrum as many organizations have taken a hit to their profits due to the pandemic and suddenly
found themselves having to combine accelerated digital transformation with reduced budgets. A
consequence of this is to retain more legacy applications, modernize them, and migrate them onto
more cost-effective cloud platforms.

There are thousands of legacy .NET applications still in use, and rewriting them all is not feasible.
While they provide value to the organization, they are often expensive to maintain, inefficient, and
often cause bottlenecks. Furthermore, application modernization has advantages over developing
new applications. Employees are familiar with the applications, and as modernizations improve
usability and productivity, they are easier to use, easier to maintain, and do not require the training
that is needed if applications were replaced.

Migrating the modernized applications to the cloud enables organizations to benefit from the security
built into the cloud platforms, rather than continually reviewing and updating security measures for
on-premises applications. An additional benefit of cloud adoption is that with many employees now
working from home and accessing corporate applications from outside the firewall following the
pandemic, organizations can benefit from the cost benefits of the security measures provided by
cloud providers. By contrast, securing on-premises systems for use by remote workers has required
additional measures adding to the overall cost of on-premises environments.

Cloud migration is therefore important to businesses, which need to assess whether it is preferable to
modernize rather than replace an application. Unless there are tangible benefits from transforming an
application, any effort would be wasted. Options, benefits, and costs are considered in the section
below.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 6

3. Options and Benefits for Application Modernization

Among options for application modernization, there is a spectrum running from a full rewrite of the
application to a simple lift-and-shift of the application to a new platform. Terminology may vary, but we
can focus on the following options, depicted in Figure 2:

• Rehost – Virtual machines running on on-premises servers are “lift-and-shifted” to cloud-based
servers.

• Replatform – Application logic (for example, written in ASP.NET) is migrated from an on-premises
platform to cloud-based platform as a service (PaaS).

• Refactor – Existing code is reviewed and restructured to take better advantage of cloud-based
models and services.

• Rewrite – An on-premises application is replaced by a cloud-native version that delivers similar, if
not enhanced, functionality.

Figure 2. Methods of Application Modernization

Each option has its benefits. At one end of the spectrum, rehosting is relatively quick and simple to
achieve in terms of the effort and cost involved. However, the organization cannot take advantage of
the additional capabilities provided by the cloud providers, and it does not address the problem of
running an outdated, legacy application with all of its inefficiencies. At the other end of the scale, a

Costs and Benefits of .NET Application Migration to the Cloud v2.0 7

complete rewrite will provide a modern application that is much more efficient, is optimized to the
organization’s requirements, and allows additional features provided by the cloud host such as
analytics and artificial intelligence to be embedded in the applications. The major disadvantage to this
approach is the budget and time required to rewrite applications.

Table 1. Benefits and Challenges of Modernization Approaches

Table 1 shows that a replatform can provide a happy medium as it removes the need to maintain the
infrastructure, which is still required with a lift-and-shift approach, but it is not as time-consuming or
complex as a rewrite. In a replatforming migration, the application components are moved to a
platform-as-a-service offering like Microsoft Azure App Service or AWS Elastic Beanstalk. Companies
benefit from having the cloud provider manage the underlying infrastructure and software of the
platform while only needing to make minor changes to their applications.

Alongside potential cost reductions, benefits of replatforming include:

• Increased productivity

• Enhanced features

• Access to innovation

Costs and Benefits of .NET Application Migration to the Cloud v2.0 8

These benefits respond to the need for greater agility in support of digital transformation. Each is
covered below, with illustrations from the Microsoft Azure portfolio.

Increased Productivity
Migrating an application from an on-premises deployment to a fully managed service in the public
cloud can increase productivity in the following distinct ways:

• Reduce administrative overhead: Adopting a managed platform helps optimize costs and lowers
administrative overhead associated with the application. The operations team no longer needs to
patch operating systems, manually scale for capacity, or manage underlying database engines.

• Improve operational efficiency: Reduced overhead means the operations team is freed up to
focus on other aspects of the system, working to improve operational efficiency and reduce
downtime. This moves operations onto the front foot, enabling teams to operate more confidently.

• Speed application and feature delivery: Rather than just keeping the lights on, the ultimate goal of
operations is to act as an enabler of innovation, empowering development teams to deliver new
applications and features faster by reducing deployment times and enabling access to leading-
edge services.

Providers like Microsoft Azure provide rich monitoring, reporting, and analytical tools that will assist
the operations team in diagnosing potential issues, finding the root cause, and verifying that a
solution was effective. Both Azure App Service and Azure SQL Database can scale dynamically and
automatically to meet customer needs and application demand. Using these capabilities, operations
teams no longer have to spend time manually spinning up new instances or vertically scaling their
database server to keep pace with demand. They also do not need to plan for capacity in their data
centers to accommodate peak load and growth. The cloud can scale to meet bursts of activity and
then contract when demand subsides.

Cloud providers also can automate the provisioning of additional operational environments for
development, quality assurance, staging, and more. The operations team no longer needs to spend
weeks creating an additional environment, and they can use infrastructure as code to ensure the
various operational environments stay consistent.

Enhanced Features
Beyond operational efficiency, cloud providers offer many features that enhance both the operational
and development experience. For example, the Azure App Service platform enables developers to
use deployment slots on a web application. Each deployment slot runs its version of the application

Costs and Benefits of .NET Application Migration to the Cloud v2.0 9

with an independent namespace. Traffic can be distributed across multiple slots for canary
deployments, blue/green testing, or a regular cutover between staging and production. Because
there is also deep integration between Visual Studio and Azure App Service, additional capabilities,
such as live-site debugging, are unlocked for the developer.

Azure App Service also includes integration with GitHub, Azure Repos, and BitBucket to enable
continuous deployment. New commits to a specific branch in a code repository will trigger a build
process and deployment of the new code to Azure App Service. The continuous deployment feature
can be integrated with Azure Pipelines to ensure proper code coverage and testing are performed
before a new build is deployed.

Backup and recovery of application data and replication to a separate region are simplified when
using the cloud. Azure SQL Database can easily replicate data to a designated partner region. A
scaled-down instance of Azure App Service could be running in the same partner region, with the
whole solution placed behind a Traffic Manager to make failover a relatively simple process. Since
capacity can be allocated on demand, it is no longer necessary to maintain a disaster recovery
environment with matching capacity at all times.

Access to Innovation
Migrating on-premises applications places them directly adjacent to the rapid innovation happening in
the cloud today. New services and features are constantly introduced in clouds like Microsoft Azure.
In some cases, portions of the application could be updated to use a different service, like moving
from traditional Microsoft SQL Server to Azure SQL Database to handle frequent scaling and
unpredictable use. In other cases, an application could be enhanced by consuming another service,
like adding a chatbot to an existing application using Azure Bot Service or adding voice commands
with Azure Cognitive Services.

By moving an application to the cloud, it will have direct access to all of these services and more.
Additionally, developers and operations managers are freed up to investigate and experiment with
these services rather than simply keeping the lights on.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 10

4. Comparing PaaS Offerings For Migration

While newer applications might be developed in a cloud-native manner, traditional ASP.NET
applications were written before advances like .NET Core and microservice architectures . It is not
simple or cost effective to rewrite these applications to support a new programming paradigm, but
that does not mean they cannot take advantage of what the cloud offers.

Traditional ASP.NET applications backed by Microsoft SQL Server can be moved to the PaaS offerings
on the major public cloud providers. Microsoft offers Azure App Service and Azure SQL Database to
provide the web front end and database back end required by most applications. Microsoft manages
the underlying systems, reducing the operational overhead associated with managing and
maintaining web and database servers.

Amazon Web Services has some similar capabilities in its Elastic Beanstalk service, which can
generate environments that include an autoscaling group of EC2 instances and a deployment of its
Relational Database Service. Both AWS and Microsoft are providing managed virtual machines
running Windows Server and IIS, mirroring the current deployment environment of traditional ASP.NET
applications. Microsoft’s PaaS solution abstracts most of the underlying infrastructure and
maintenance details, while AWS’ offering exposes these to the customer.

The similarities of these platforms make the migration of ASP.NET applications from on-premises
environments simple and predictable while providing benefits over a lift-and-shift migration that
simply uses infrastructure-as-a-service (IaaS) components.

Essentially, without refactoring or rewriting code, traditional applications can be moved seamlessly to
a PaaS deployment in the cloud. At least, that is the theory. To test that theory, GigaOm chose to
perform a field test migration of an ASP.NET application from a traditional on-premises environment to
both Microsoft Azure and AWS. The field test compared three environments:

1. Windows VMs running on VMware

2. Microsoft Azure using Azure App Service and Azure SQL Database

3. AWS using Elastic Beanstalk, EC2, and Amazon RDS

The application deployed was the Parts Unlimited web store, an ASP.NET application using IIS for a
web server and Microsoft SQL Server for the back end, as shown in Figure 3. The web store has an
inventory of items that registered users can search and purchase. The application was installed in

Costs and Benefits of .NET Application Migration to the Cloud v2.0 11

https://github.com/microsoft/PartsUnlimited/tree/aspnet45

each environment and assessed for performance, ease of migration, and additional features available
from each cloud provider.

Figure 3. The Parts Unlimited Application Architecture

We look at the top-level results of the field test and their ramifications below. Further detail on the
field test is provided in the appendix.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 12

5. Field Test Findings, Migration Benefits and TCO Analysis

Part of the test involved comparing and contrasting the performance of two leading cloud solutions on
the market, Amazon AWS and Microsoft Azure, with a further option being to leave the application in
an on-premises scenario. Each option was tested for ease of migration, performance, and TCO.

Migration
Overall, the migration process from on-premises to Azure and AWS was relatively straightforward,
with Azure slightly easier. Microsoft’s development suite has built-in functionality for migrating to
Azure. This made the application deployment seamless via Visual Studio 2017. SQL migration from on-
premises to Azure required no extra tooling, as it was able to use the built-in functionality within
MSSQL Management Studio.

Using Azure, the entire infrastructure was spun up via Visual Studio. There are plenty of Terraform
options available as well. On the application side, the Azure application deployment and infrastructure
was fulfilled simultaneously via Visual Studio. The ability to change web.config without performing a
reupload was a huge time saver, as it allowed the database connection strings <App Service Editor>
to be tweaked. Troubleshooting was a much more pleasant experience with Debug Console.

In terms of AWS migration, the infrastructure was deployed via webGUI, which made for a relatively
easy spin up. Migrating the database was a bit cumbersome, as we needed to upload .bak to an S3
bucket and import it. There was no built-in tooling or plugins for MSSQL Management Studio, which
would have been helpful.

During application deployment, there were a few issues with the stickiness setting on the load
balancer and opaqueness of logging. There was no way to reconfigure the application once deployed
other than redeploying, which could take 10 to 15 minutes. In addition, it was only possible to request
the previous 100 lines of logs via webGUI.

The on-premises option required the spinning up of the entire VCenter environment, the creation of a
windows VM template, and the deployment of the servers to create the infrastructure. This was time
consuming but made slightly better by using a Terraform project. Many steps would not have been
necessary if we were deploying to an existing environment. Migrating the application from the
development machine to IIS nodes and then cloning additional nodes was relatively easy as this is a
well-established pattern for application deployments, and Visual Studio had built-in tools to address
this.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 13

The performance was similar across all environments, which is not surprising as we tried to ensure
that similar resources were used for each option. The cloud environments performed slightly better,
most likely due to more robust networking as individual machine resources never went above 10%
utilization for CPU or RAM. More information on the specifics of the hardware can be found in the
appendix.

The test was designed to show that the performance of a migrated application can be at least as
good, if not better than, an on-premises instance. Once the application has been migrated, many
updates can be added to improve performance, including content-delivery network (CDN), dynamic
scaling of resources, upgrading to HTTP/2, and adding a local cache to the web servers.

The Microsoft Azure solution offered savings of up to 54% compared to on-premises and 35%
compared to AWS, demonstrating significant potential savings through migrating applications to
Microsoft Azure. Despite slight price changes from the previous benchmark, Azure remains the most
cost-effective option by some margin, particularly when the ease of migration is factored in. In
addition to being more expensive than Azure, running in AWS did not allow the reuse of existing
Microsoft licensing. Potentially, additional savings could be had by introducing dynamic scaling to the
environment to reduce consumption during periods of lower demand. More detail on the TCO
calculation and price-performance considerations can be found below.

TCO Analysis
Calculating a true TCO for application modernization or migration is difficult because of variable
qualitative aspects, such as administrative overhead and operational headcount. For the analysis of
each environment, we assumed that the headcount remains consistent, and we did not consider the
larger data center or cloud deployment that might be part of an organization. Instead, we looked at
the cost of running each environment for three years.

Hosting considerations also need to be accounted for. Migrating the entire application from an on-
premises environment would likely result in the removal of one virtualization host. Therefore, for the
on-premises environment, we included the cost of two physical hosts, four vSphere licenses for the
CPUs, and an estimate for the power and cooling consumed by those hosts.

In terms of results, Microsoft Azure with Azure Hybrid Benefit (AHB) licensing had the lowest overall
cost, saving an estimated 54% over the on-premises deployment and 35% over AWS.

AHB licensing allows existing Windows Server and SQL Server licenses with active Software
Assurance to be applied to Azure virtual machines and Azure SQL Database instances. The estimated

Costs and Benefits of .NET Application Migration to the Cloud v2.0 14

cost of a SQL Standard license is $18,842, based on official pricing published in December 2021.
Assuming a migration scenario with an existing SQL Standard License being recouped for use in
Microsoft Azure, the Azure SQL Database cost would be reduced from $18,842 to $8,334, which
would reduce the total Microsoft Azure cost to $32,226. The use of existing SQL licenses is not an
option on Amazon RDS. The addition of AHB creates a compelling savings of 35% over AWS.

These relative costs are shown in Table 2. Note that we do not incorporate dynamic scalability and
bundled features, which also have a bearing. In addition, the pricing calculation for Azure uses
reserved capacity pricing for App Service and Azure SQL and the East US region for hosting, while
AWS uses reserved instance pricing and the us-east-1 region for hosting. More information regarding
the configuration and calculation can be found in the appendix.

Table 2. Estimated Cost by Environment

There are other, less quantitative aspects that we believe give Microsoft Azure an edge when
calculating a true TCO figure. One important aspect is operational efficiency and administrative
burden. Each approach offers a different combination of benefits and costs:

• Azure App Service and Azure SQL Database are designed to be true, managed platforms,
abstracting the underlying components that compose each service. To a certain extent, this limits
the amount of customization and control that a customer has over the web service or database.
The tradeoff is that Microsoft handles upgrades, patching, and maintenance.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 15

• Amazon Elastic Beanstalk acts more like an automation platform to provision an environment than
a fully managed offering. The base constructs used by Elastic Beanstalk—EC2, RDS, ALB—are not
abstracted from the customer, providing a large range of flexibility. The tradeoff for AWS
customers is a potential for a greater administrative load that is hardly any different from
consuming IaaS. In fact, a more apt comparison might be Azure Virtual Machine Scale Sets,
Application Gateway, and Azure SQL Managed Instances.

• On-premises deployment does not offer any form of managed services. It is up to the existing
operations teams to continue to support the application. Any migration to the cloud should be
considered in terms of the additional administrative load and complexity introduced by a new
environment, compared to the lower cost and operational efficiency of using a managed service.

Finally, we note that some applications may require the additional flexibility provided by an IaaS type
solution. The Parts Unlimited application used in our benchmarking test was not one of those, and
based on Microsoft’s intense focus supporting traditional ASP.NET, most applications should work on
Azure App Service.

Price/Performance Considerations
During the benchmarking process, we ran an average of 15,000 sessions per hour through each
environment, or about 11 million sessions per month. None of the web servers exceeded 25%
utilization, meaning there was ample headroom. By reducing the number of web servers to two with
an autoscale policy to add instances when the CPU reaches 70%, we can further reduce the cost of
the environment without sacrificing performance.

Table 3 illustrates the cost per month for each environment and the cost per 10K sessions, including
where the web servers have been scaled back to two instead of four. Figure 4 compares the cost per
10K sessions at the 4 VM and 2 VM levels.

Table 3. Cost per Month for Each Environment (lower is better)

Costs and Benefits of .NET Application Migration to the Cloud v2.0 16

Costs and Benefits of .NET Application Migration to the Cloud v2.0 17

Figure 4. Cost per 10,000 Sessions for Each Environment (lower is better)

Regardless of whether the application is running on-premises or on Microsoft Azure, the same SQL
Standard licenses would be necessary. If the application is moved to AWS, the license cannot be
migrated, and instead, the license cost is rolled into RDS. Therefore, the Microsoft Azure with AHB
environment represents a cost savings of 35% over AWS with four VMs and a savings of 39% with two
VMs.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 18

6. Conclusion

Organizations looking to transform can see application migration as a clear opportunity to reduce on-
premises legacy workloads and benefit from the advantages of cloud-based models. As illustrated by
the field test for .NET applications, migration to a hosted platform environment can be straightforward
and offers significant benefits over on-premises solutions, both in tangible (cost/performance) and
less tangible (access to innovation) terms.

We would recommend that organizations looking to modernize applications in general, and .NET
applications in particular, consider the following:

• Existing legacy and heritage applications can be run at a significantly lower cost using a cloud-
based platform, freeing resources and unlocking the potential for new application delivery.

• Replatforming applications are minimally disruptive and can be simple to test, enabling piloted
migration, risk assessment, and cost evaluation before full deployment.

• Fully managed platforms provide the highest simplicity and the lowest administrative burden
compared to in-house infrastructure and platform stacks.

• Migrating applications to the cloud provides access to additional capabilities offered by the cloud
providers.

• For .NET applications, it is easy to get started today by taking advantage of Microsoft’s App
Service and Database Migration Assistance tools, which help automate migration to the Azure App
Service and Azure SQL Database.

To get started down a migration path, we recommend taking the following actions:

• Assessment: Categorize existing applications by revenue generation and cost to maintain. While
there may be hundreds or thousands of applications to treat, consider working on applications
according to a specific group, such as department, application, or data type.

• Prioritization: Identify applications that make good migration candidates according to criteria such
as existing cost of maintenance, risk of migration, and opportunity created, to unlock new
functionality.

• Evaluation: You can map application dependencies across data sources, services, and

Costs and Benefits of .NET Application Migration to the Cloud v2.0 19

https://appmigration.microsoft.com/
https://appmigration.microsoft.com/
https://datamigration.microsoft.com/

infrastructure to help identify group migration candidates.

• Validation: Perform test migrations to validate functionality and performance and build experience
around target environments, for example, in terms of what operational management dashboards
are available.

Overall, the opportunity to move applications to the cloud does not have to be seen as an all-or-
nothing deal that requires either moving existing virtual machines or partially or completely rewriting
applications. By considering replatforming as an approach, organizations can derive benefits rapidly
without cost and risk and unlock new opportunities for innovation and transformation.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 20

7. Appendix

Environment Summary

The on-premises environment had four web servers running Windows Server 2019 and a single
database server running Windows Server 2019 and SQL Server 2019. The load balancer was a single
virtual machine running Ubuntu LTS 20.04 with Nginx. Figure 5 shows the architecture.

Figure 5. The On-Premises Benchmark Environment

The Microsoft Azure environment shown in Figure 6 used the Azure App Service with a Premium V3
App Service Plan, configured to run a minimum of four instances. Database services were provided by
a Gen5 instance of Azure SQL Database with four vCores. Load balancing services are included as
part of the Azure App Service.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 21

Figure 6. The Microsoft Azure Benchmark Environment

The AWS environment shown in Figure 7 used m5d.large EC2 instances provisioned by Elastic
Beanstalk. The instances were part of an autoscale group with a minimum of four instances. Database
services were provided by Amazon RDS and provisioned by Elastic Beanstalk. The RDS instance was
a db.m5.xlarge size running Microsoft SQL Server 2019. Load balancing services were supported by
an Application Load Balancer provisioned by Elastic Beanstalk.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 22

Figure 7. The AWS Benchmark Environment

Testing Configuration

The performance for each instance of the application was assessed by running three different load
tests against the application. The Home Page Load test simply loaded the application’s home page in
a browser window. The Item Search test entered a search term on the home page and clicked on the
first result. The Item Purchase test logged a user into the site and walked through the purchase of an
item from the site. Each test was run for 60 minutes, with a sustained load of concurrent users
accessing the site. More details on the tests can be found later in this appendix.

The two measures presented below are the total number of successful sessions executed during each
test and the average duration of each test. AWS led the way in successful sessions completed,
especially on the Item search testing, as shown in Figure 8.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 23

Figure 8. Total Successful Sessions Across Different Load Tests (higher is better)

The AWS environment had the lowest average duration for each test, with Azure demonstrating
comparable numbers. Figure 9 shows the results.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 24

Figure 9. Average Duration Across Load Tests (lower is better)

Overall, the performance of all the environments was remarkably consistent, with both cloud services
showing better performance over the on-premises environment for page load and item search. This
makes sense because of the similar hardware and software used for each environment. However, on-
premises had a better performance in terms of average duration than the cloud options for item
purchase.

Scenario Configuration

The goal of the simulation was to migrate an existing ASP.NET MVC application from a traditional on-
premises deployment to Microsoft Azure and Amazon Web Services. Three environments were built
out to test the migration process and performance of the application: Microsoft Azure, Amazon Web

Costs and Benefits of .NET Application Migration to the Cloud v2.0 25

Services, and VMware vSphere running on bare metal servers supplied by Packet. To keep the
comparison valid, we attempted to make each environment as equivalent to the others as possible. In
some cases, the same CPU or exact hardware and software specifications were not available in each
environment. For instance, Azure SQL Database doesn’t use the same software as Microsoft SQL
Server. Where there is a divergence, we tried to use the closest equivalent.

Application

The application is a version of the Parts Unlimited application running ASP.NET 4.7 with MVC. The
application uses an IIS front end and a Microsoft SQL Server back end. The version of the Parts
Unlimited application can be found on GitHub under the aspnet45 branch.

The application was loaded and configured using Visual Studio 2017 Community Edition. For the
Microsoft Azure environment, the application was published directly from Visual Studio using the
built-in Azure deployment options. The application was deployed to a pre-existing Azure Web App
and Azure SQL Database instead of creating one through the wizard. The wizard handled changes to
the database connection information.

The AWS Toolkit for Visual Studio 2017 extension was installed to simplify deployment of the
application to Elastic Beanstalk. The application was published to a pre-existing Elastic Beanstalk
environment instead of creating one through the wizard. Changes to the database connection
information were handled through a web transform file.

For the on-premises environment, the application was published to a local folder on the desktop and
then copied to the web servers manually. Changes to the database connection information were
handled through IIS configuration changes to the Web.config file.

It should be noted that in a true production workflow, publishing a new version of the application
would likely be handled by an automated deployment process as part of a CI/CD pipeline backed by a
source code repository. For this test, it was more important to get the application deployed simply
than to build out a full deployment pipeline. We will discuss the various deployment scenarios later
on.

On-Premises

To simulate an on-premises environment, we created a VMware installation running on bare-metal
servers supplied by Packet. The environment was composed of two bare-metal servers running in

Costs and Benefits of .NET Application Migration to the Cloud v2.0 26

https://github.com/microsoft/PartsUnlimited/tree/aspnet45

Packet’s Dallas-Fort Worth region. Note that for CPU configuration, Skylake (2015) is one of four
architectures in play, as well as Cascade Lake (2019), Broadwell (2014), and Haswell (2013). Wikipedia
provides an overview of Intel CPU architectures. The specifications for the servers are listed here:

• Size: m2.xlarge.x86

• CPU: 2x Intel Scalable Gold 5120 (Skylake) 28-Core @ 2.2GHz

• RAM: 384GB

• Disk: 3.2 TB NVMe

• Network: 2 X 10Gbps

• OS: ESXi 6.5

On top of the ESXi hosts, virtual machines were created for the web server, database server, vCenter
server, routing VM, and a load balancer. The specifications for each server are listed in Table 4:

Table 4. On-Premises Server Specifications

Costs and Benefits of .NET Application Migration to the Cloud v2.0 27

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

The VM performed routing between the private address space of the internal virtual machine network
and the public IP address space provided by Packet.

The database server had Windows SQL Server 2019 Standard installed.

There are four web servers with IIS, and the .NET Framework 4.7 installed. The physical hosts can
support up to 30 web servers, although it would be a manual process to scale them.

The load-balancer VM used Nginx 1.21.5 as a load balancer for the web server. Nginx was configured
to use the ip-hash load balancing algorithm. Doing so ensures that each client is directed to the same
web server.

Microsoft Azure

The Microsoft Azure environment used Azure App Service and Azure SQL Database to host the
application running in the East US region. The App Service Plan used for the App Service deployment
used the Premium 1 v3 SKU. The virtual machines backing the App Service plan were the D2v4 Azure
VM SKU running Windows Server 2019. The minimum number of instances was set to 4, with an
autoscale rule to add instances when the average CPU exceeded 70%. There is a maximum of 30
instances in the App Service Plan.

The D2v4 SKU has 2 vCPU, 8GB of RAM, and 250GB of remote file storage. The CPU used by the Dv4
series of Azure VMs is Intel Xeon Platinum 8272CL (Cascade Lake).

The Azure SQL Database server was created using hardware generation Gen5 with 4 vCores and
20GB of RAM. Gen5 hardware uses an Intel Broadwell or Skylake processor 5.1GB of provisioned
memory per vCore.

The Azure App Service does not provide direct access to a load balancing mechanism for apps
deployed on the platform. Within the general settings, it is possible to control Application Request
Routing (ARR) affinity. For the deployment, we set ARR affinity to “enabled.”

Amazon Web Services

The Amazon Web Services environment used the Elastic Beanstalk Service and Relational Database
Service (RDS) to host the application running in the us-east-1 (N. Virginia) region. The Elastic Beanstalk

Costs and Benefits of .NET Application Migration to the Cloud v2.0 28

environment used the .NET on the Windows Server platform with IIS on Windows Server 2019.

The target group behind the platform used m5d.large size EC2 instances with an Intel Xeon Platinum
from the Skylake-SP or Cascade Lake generation 2 vCPUs, 8GB of RAM, and 250GB of EBS storage.
The group was set to have a minimum of four instances, with an autoscale rule to add instances when
the average CPU exceeded 70%. The maximum number of instances is a function of the quota for EC2
instances for the AWS region and account. The default limit is 64 vCPUs for M-family instances,
equivalent to 32 m5d.large instances. For parity with the other environments, a limit of 30 instances
was set for the target group.

The RDS instance was created using the db.m5.xlarge instance size. The db.m5.xlarge instance uses
the Skylake-SP or Cascade Lake processor with 4 vCPUs and 16GB of RAM. The instance was
configured with 250GB of EBS SSD storage.

The load balancer for the Elastic Beanstalk Service was an Application Load Balancer (ALB) with
session persistence enabled and a round-robin load balancing approach.

Environment Comparison

Table 5. Web Server and Database Components Across Three Environments

The largest variation among the environments is storage and CPU. For the web servers, the Azure
App Service instances are provisioned with a non-configurable 250 GB of remote storage, while the
AWS EC2 m5d.large instances default to 30GB, and VMware suggests 40GB for Windows Server
2019. Additional storage was added to the m5d.large instances for parity. When trying to match

Costs and Benefits of .NET Application Migration to the Cloud v2.0 29

hardware across the platforms, the m5 family came the closest in terms of memory and processor.

On the database side, the minimum for the RDS instance size db.m5.xlarge is 200 GB. Azure SQL
Database has a configurable amount of storage, as does the VMware implementation.

Since storage is not a constraining factor for the Parts Unlimited application, we ensured all
environments had more than adequate storage for the web application and database. The more
important factor for storage is having a consistent media type. Azure and AWS are using SSD storage
and the on-premises environment is using NVMe. The difference in media type for the on-premises
environment may result in slightly better performance, but the net impact should be negligible.

The more important factors are the number and type of CPU cores and quantity of RAM, which have
been kept nearly identical across the environments (shown in Table 6). Likewise, the CPU generations
were kept as similar as possible as well.

Table 6. Type of CPU Cores Used in Each Environment

By keeping as many factors as possible the same, the expectation is that the application’s
performance should be similar across all three environments.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 30

Testing Configuration

Three different tests were performed across the three environments to check their performance in
common usage scenarios. The load testing was performed using LoadView by Dotcom-Monitor.
LoadView is a hosted solution capable of generating web page loads from multiple AWS regions
worldwide. Each test is composed of multiple load injector nodes, each running one or more test
instances. LoadView assesses each test to determine the number of test instances supported by a
single node.

It’s important to note that the tests run from within AWS, and one of the tested environments also runs
in AWS. Specifically, the AWS environment runs in the US East (N. Virginia) region. The testing
environment used a mix of four different AWS regions:

• 40% – Amazon US East (Ohio)

• 40% – Amazon US West (N. California)

• 10% – Amazon EU (London)

• 10% – Amazon Asia Pacific (Tokyo)

The arrangement may have led to slightly better performance numbers for the AWS environment,
although the data do not seem to support that.

The tests performed by LoadView can be a simple HTTP request, a complete page load, or a multi-
step website interaction. For the performance test, we chose to go with three scenarios:

• Homepage load: Access the application’s main page and evaluate how long it takes to load.

• Item search: Access the application’s main page and search for an item using the search box. Click
on the first result from the search.

• Item purchase: Access the application’s main page and log in as a customer. Select an item
category and click on the first item in the category. Add the item to the shopping cart and then
purchase the item.

These tests are not leveraging an API or REST call. Each test simulates the actions in a
browser–Chrome in this case–and measures the time it takes to complete each action, and the overall

Costs and Benefits of .NET Application Migration to the Cloud v2.0 31

time of the test.

Testing Results

Home Page Load
The Home Page Load was a simple test to load the home page of the application (picture below):

The load type was a step curve performed over one hour, with a gradual increase in the number of
users for the first 10 minutes and then a sustained load for the following 50 minutes. The test started
with 10 users, increased by 10 users for 10 minutes, and then held steady at 110 users for 50 minutes.

The test was distributed across four AWS regions with the following allocations and number of load
injectors, as shown in Table 7:

Table 7. Home Page Load Test Specifications

Each environment was subjected to the same test with the same parameters. As noted above, the
AWS environment runs in the same region as 40% of the configured load. We should expect that
response times will be a little lower for those tests due to the lower latency of the network.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 32

Table 8 shows the results of the Home Page Load test against all three environments.

Table 8. Home Page Load Test Results

AWS was able to load more sessions within the one-hour time frame with Azure close behind.
OnPrem had a much longer session duration for loading the page.

Item Search
The Item Search test was meant to simulate a user loading the website and searching for a product.
The test loaded the home page, typed “battery” in the search box, executed the search, and clicked
on the first result.

The load type was a step curve performed over one hour, with a gradual increase in the number of
users for the first 10 minutes and then a sustained load for the following 50 minutes. The test started
with five users, increased by five users for 10 minutes, and then held steady at 55 users for 50
minutes.

The test was distributed across four AWS regions with the following allocations and number of load
injectors, indicated in Table 9:

Table 9. Item Search Test Specifications

Costs and Benefits of .NET Application Migration to the Cloud v2.0 33

Each environment was subjected to the same test with the same parameters. Table 10 shows the
results of the Item Search test against all three environments.

Table 10. Item Search Test Results

LoadView could complete more sessions in the AWS environment by a large margin. This is most
likely due to the LoadView Agents being located in AWS itself.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 34

Item Purchase
The Item Purchase test was meant to simulate a user purchasing an item from the website. Ten users
were created in each environment to be used for the login and purchase process. During each test, a
user went to the home page and logged into the site. Then they clicked on the Lights category and
clicked on the first item in the results. They then added the item to their shopping cart and went to
checkout. At checkout, they filled out the fields for purchase and completed the purchase.

The load type was a step curve performed over one hour, with a gradual increase in the number of
users for the first 10 minutes and then a sustained load for the following 50 minutes. The test started
with five users, increased by five users for 10 minutes, and then held steady at 55 users for 50
minutes.

The test was distributed across four AWS regions with the following allocations and number of load
injectors, indicated in Table 11:

Table 11. Item Purchase Test Specifications

Each environment was subjected to the same test with the same parameters. Table 12 shows the
results of the Item Purchase test against all three environments.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 35

Table 12. Item Purchase Test Results

All three options performed equally well with the number of concurrent users. LoadView was set to
have a “normal user” delay between tasks. This may have led to such similar timings. The servers
were never taxed during this scenario.

Test Summary
Overall the performance of each environment was consistent across all three environments. AWS was
able to process the most sessions in each test, and had the lowest average duration. The AWS
environment also produced the most consistent performance, with the lowest standard deviation for
each test. In each test, the on-premises environment lagged.

Although the AWS and Azure environments were configured to autoscale the web servers, an
autoscaling event never occurred. The four instances were able to handle the load generated by the
tests without ever surpassing the 70% CPU utilization mark. In fact, the CPU utilization of all the web
servers in every environment never exceeded 40%.

If the tests represent a normal load on the Parts Unlimited application, reducing the number of web
server instances to three or possibly two would be safe. With the dynamic scaling features of Azure
and AWS, it would be trivial to scale out as load increased and scale back when load dropped below a
certain threshold.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 36

TCO Details

The cost of each environment was calculated using the AWS TCO calculator, AWS Pricing Calculator,
and Azure Pricing Calculator. Reserved capacity was used whenever possible for the maximum
duration of one or three years. The total cost is an estimate of running the application for three years.

The cost calculations focus solely on running the applications, not on all of the supporting services
like monitoring, data protection, and security. Migrating a single application from on-premises to the
cloud would not significantly impact the cost structure of the remaining supporting services.
Additionally, the supporting services in each cloud often come free of charge or bundled as part of
the service.

The savings can be profound. Our modeling determined that a deployment built on Azure with Azure
Hybrid Benefit licensing can yield savings of 35% over the cost of an AWS deployment, and 54% over
the cost of an on-premises deployment.

On-Premises Costs
The benchmark testing was performed with four web servers running, yielding the costs in Table 13.

Table 13. On-Premises Estimated Costs

Costs and Benefits of .NET Application Migration to the Cloud v2.0 37

Microsoft Azure Costs
The benchmark testing was performed with App Service running the PremiumV3 SKU, at the P1 size,
with four instances and Azure SQL Database running the Gen5 server type with four vCPUs. The
resulting cost breakout is shown in Table 14.

Table 14. Microsoft Azure Estimated Costs

Note that the Azure SQL Database cost shown here does not reflect the Azure Hybrid Benefit (AHB)
licensing options that allow existing SQL licenses to be used on Microsoft Azure. In a migration
scenario, an organization could bring their existing SQL License to Azure and save on paying for the
SQL license, reducing the Azure SQL Database cost to $8,334 for the three years. Both the Azure SQL
Database and App Service Plan are applying the reserved instance pricing option to further reduce
the cost of the environment.

This cost structure, which is reflected in the calculations used in Table 2 and Table 3, yields significant
savings. For instance, the estimated cost to migrate to Azure without AHB was calculated to be
$42,735, compared to $32,226 with Azure AHB, as shown in Table 2.

The cost per month for an Azure migration likewise changes significantly with AHB applied. A 4 VM
deployment that cost $895 for Azure with AHB in Table 3 would cost $1,187 without AHB. The $613
cost of a 2 VM Azure deployment with Azure AHB goes up to $905 without AHB.

The impact on session costs is comparable. At 4 VM, the cost goes from $0.81 per 10K sessions with

Costs and Benefits of .NET Application Migration to the Cloud v2.0 38

Azure using AHB to $1.08 per 10K sessions with Azure without AHB. At 2 VM, those figures are $0.56
and $0.82, respectively.

AWS Costs
The benchmark testing was performed with EC2 running four instances at the m5d.large size and an
RDS instance using the db.m5.xlarge size. The Application Load Balancer is not bundled with Elastic
Beanstalk, and neither is network traffic—both are broken out as separate line items. Table 15 shows
the rundown of estimated costs.

Table 15. AWS Estimated Costs

Costs and Benefits of .NET Application Migration to the Cloud v2.0 39

8. About Michael Delzer

Michael Delzer is a global leader with extensive and varied experience in technology. He spent 15
years as American Airlines’ Chief Infrastructure Architecture Engineer, and delivers competitive
advantages to companies ranging from start-ups to Fortune 100 corporations by leveraging market
insights and accurate trend projections. He excels in identifying technology trends and providing
holistic solutions, which results in passionate support of vision objectives by business stakeholders
and IT staff. Michael has received a gold medal from the American Institute of Architects.

Michael has deep industry experience and wide-ranging knowledge of what’s needed to build IT
solutions that optimize for value and speed while enabling innovation. He has been building and
operating data centers for over 20 years, and completed audits in over 1,000 data centers in North
America and Europe.. He currently advises startups in green data center technologies.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 40

9. About KK Verma

KK Verma is a career Chief Information Officer (CIO) with over three decades of experience,
specializing in building and growing organizations by leveraging technology to drive revenue,
profitability, and customer excellence. He has led technology departments for some of the well-known
firms during his career – Conduent, Citigroup, IBM, American Airlines, Hewlett Packard.

KK is a strategic advisor and partner, who has led several large-scale digital transformations for
organizations, with proven results. He brings a unique blend of leadership skills, organizational
development, and relationship-building skills to create new business models to thrive in the new
economy.

Mr. Verma received his Master of Business Administration (MBA) from University of Texas and
Bachelor of Computer Engineering from Pune University. He is currently residing in Dallas, Texas for
over 25 years with his family.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 41

10. About Evan Chisholm

Evan Chisholm is a seasoned IT engineer focused on process automation and up-skilling operations
teams to adopt DevOps practices. Evan has worked with organizations of all sizes (from startups to
Fortune 500) across many verticals, including fintech, manufacturing, and service delivery. He aims to
eliminate “toil” and empower engineers to do more than they imagined.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 42

11. About GigaOm

GigaOm provides technical, operational, and business advice for IT’s strategic digital enterprise and
business initiatives. Enterprise business leaders, CIOs, and technology organizations partner with
GigaOm for practical, actionable, strategic, and visionary advice for modernizing and transforming
their business. GigaOm’s advice empowers enterprises to successfully compete in an increasingly
complicated business atmosphere that requires a solid understanding of constantly changing
customer demands.

GigaOm works directly with enterprises both inside and outside of the IT organization to apply proven
research and methodologies designed to avoid pitfalls and roadblocks while balancing risk and
innovation. Research methodologies include but are not limited to adoption and benchmarking
surveys, use cases, interviews, ROI/TCO, market landscapes, strategic trends, and technical
benchmarks. Our analysts possess 20+ years of experience advising a spectrum of clients from early
adopters to mainstream enterprises.

GigaOm’s perspective is that of the unbiased enterprise practitioner. Through this perspective,
GigaOm connects with engaged and loyal subscribers on a deep and meaningful level.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 43

12. Copyright

© Knowingly, Inc. 2022 "Costs and Benefits of .NET Application Migration to the Cloud" is a
trademark of Knowingly, Inc.. For permission to reproduce this report, please contact
sales@gigaom.com.

Costs and Benefits of .NET Application Migration to the Cloud v2.0 44

https://www.knowingly.com/
https://www.knowingly.com/
mailto:sales@gigaom.com

	Costs and Benefits of .NET Application Migration to the Cloud v2.0
	A Guide to Cloud-Based Modernization of .NET Applications

	Costs and Benefits of .NET Application Migration to the Cloud
	A Guide to Cloud-Based Modernization of .NET Applications
	Table of Contents
	1. Summary
	2. Digital Transformation Is Being Driven by the Need for Modernization
	3. Options and Benefits for Application Modernization
	4. Comparing PaaS Offerings For Migration
	5. Field Test Findings, Migration Benefits and TCO Analysis
	Figure 4. Cost per 10,000 Sessions for Each Environment (lower is better)

	6. Conclusion
	7. Appendix
	Environment Summary
	Testing Configuration
	Scenario Configuration
	Application
	On-Premises
	Microsoft Azure
	Amazon Web Services
	Environment Comparison
	Testing Configuration
	Testing Results
	TCO Details

	8. About Michael Delzer
	9. About KK Verma
	10. About Evan Chisholm
	11. About GigaOm
	12. Copyright

	Untitled

