
W W W . S P K A A . C O M

Top 10
Do’s and
Don’ts of

Infrastructure-
as-Code

2 3

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

3

Introduction
Technology is one of the fastest evolving commodities in human existence. Hardware
virtualization began an exciting new adventure in the early 2000s, and cloud
computing began its journey to provide the endless scalability options we know today.

In 2006, Amazon Web Services Elastic Compute Cloud was launched which became
a pivotal catalyst for questioning the sole methodology of on-premises computers.
As cloud computing evolved, so too did the opportunity for businesses and DevOps
professionals to consider the future of infrastructure. And with that IaC was born.

Introduction
What is Infrastructure as Code (IaC)
What problem does IaC solve?
What is the difference between IaC and IaaS?
How does IaC align with DevOps?
What are the benefits of Infrastructure as Code?
What are the challenges of IaC?
Terraform IaC tool - Use Case
The problem
Identifying the path to success
The solution
Top 10 Do’s and Don’ts of Infrastructure as Code
Conclusion

5
7
8

12
11

20
15

Contents
4

10

14

4

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

What is Infrastructure-as-Code (IaC)

Microsoft describes IaC as:

Infrastructure as Code (IaC) is the management of infrastructure (networks, virtual
machines, load balancers, and connection topology) in a descriptive model, using
the same versioning as DevOps team uses for source code. Like the principle that
the same source code generates the same binary, an IaC model generates the same
environment every time it is applied. IaC is a key DevOps practice and is used in
conjunction with continuous delivery.

What problem does IaC solve?

Think back to 20 years ago when a business, let’s call it “Brand A”, wanted to create
an amazing web application for its customers to visit. The first course of action would
be to provision a few on-premises computers to both build and deploy the website.
So, Brand A sets off to provision these two computers, configures them with the exact
same specifications, and hires a genius web developer to create a website that will
attract customers for them. Fast forward five years, and Brand A has grown. It now
needs a faster website to deal with the high volume of web traffic. So, Brand A invests
in new computers, waits a few weeks for them to arrive, configures the computers and
the web application to replicate the original, and then starts the process again.

But this time around, Brand A also needs staging computers, and the IT team
now wants computers dedicated to testing environments too. This way the code
can be tested before it’s put into staging, and then before it is pushed to the live
environment. For each live environment computer, you need the same volume of
staging computers. For testing computers, you may need a quarter of that.

Now you can see that in order to build, test, stage, deploy and host we encounter the
following problems with a traditional infrastructure approach:

Time spent

Not only does Brand A have to wait for hardware to arrive, but they also have to
factor in repeated labour time to continually replicate environments. They also
need to factor in developers leaving and potentially taking the knowledge with
them, along with retraining new developers in their specific environment.

Cost

Hardware and developer time costs money. The other downside is the dprecia-
tion of hardware as technology quickly evolves.

Scalability

Growth is determined by your CapEx, OpEx and hardware expedience. Scaling at
speed is needed to be a key player in any market.

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

5

Put simply, Infrastructure as Code is a descriptive model that resolves traditional
infrastructure limitations through programmable code. IaC tells your Cloud Platform,
such as AWS, what your infrastructure looks like and what should be deployed -
consistently. It automates the configuration and deployment of infrastructure, without
the need to increase CapEx or OpEx. And as IaC is in a pre-configured container, it can
be deployed remotely, perfectly version-controlled, and removes the risk of manual
“hands-on” configuration, thus removing configuration drift occurrences and human
error rates.

https://docs.microsoft.com/en-us/devops/deliver/what-is-continuous-delivery

6

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

Error rates

Even the most skilled developer can make mistakes with tedious and repeat-
ed configurations over multiple devices. Failure to replicate environments in
perfect synergy is referred to as configuration drift or environment drift. When
drift happens it can lead to each machine becoming an individual snowflake
in the overall system.

Traceability

When configuration drift occurs, identifying where the version control failed
can become a full-time job in itself.

Infrastructure as Code has become pivotal in the way that businesses provision,
configure, test and deploy infrastructure, and therefore their products. Cloud tools
such as Terraform, Ansible, AWS Cloud Formation and others are becoming dominant
infrastructure options for businesses. We are moving from the age of iron, to the age
of the cloud.

Businesses still solely leveraging traditional on-premises infrastructure are finding
themselves left behind with slower releases and time to market. The competition
utilising IaC is now thick and fast.

Atlassian has a simple diagram that helps to describe the way IaC works:

7

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

What is the difference between IaC and IaaS?

Whilst they sound similar, Infrastructure as Code, and Infrastructure-as-a-Service are
actually two different concepts:

1. Infrastructure-as-Code - A tool used to provision, manage and deploy
infrastructure, either in the cloud or on-premises.

2. Infrastructure as a Service - Part of the core cloud services that includes
virtualized computing resources like networking, servers, storage, etc.

Think of IaaS as the brain. It’s there to act as the container for managing and storing
functionality. IaC is the nervous system. It creates the nodes and firing mechanisms to
activate the body of your business.

Leveraging both IaC and IaaS can drastically improve the management of your
business infrastructure and your product quality.

For SMEs (small and medium enterprise), navigating the new technological
developments in order to compete in tomorrow’s markets, whilst still meeting your
customer and market demands today, can be a distraction you wish to deal with later.
And even Enterprises are no exception to this.

However, failing to start down this path to improve your infrastructure and
technological advancements now can leave you even further behind. So too can
“dabbling” in IaaS and IaC without a thorough strategy. Many of our clients who have
dedicated in-house teams still prefer to outsource the exploration of IaC and IaaS.

If your business does not have in-house capability or availability to protect your
business needs tomorrow, it is highly recommended that you choose a trusted
infrastructure and DevOps partner, like SPK and Associates, to support your vision for
tomorrow, whilst you focus on your business vision for today.

https://www.atlassian.com/microservices/cloud-computing/infrastructure-as-code

8

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

How does IaC align with DevOps?

Any good modern software and dev team knows that building rapidly, reliably and Any good modern software and dev team knows that building rapidly, reliably and
with continuous learning and evolution is what makes a business grow. And any good with continuous learning and evolution is what makes a business grow. And any good
software and dev team knows that cherry-picking the processes ripe for automation software and dev team knows that cherry-picking the processes ripe for automation
and removing manual laborious tasks allow them to actually focus on more business and removing manual laborious tasks allow them to actually focus on more business
growth.growth.

So you can see why at first glance it’s easy to jump to the conclusion that IaC is just So you can see why at first glance it’s easy to jump to the conclusion that IaC is just
another DevOps automation tool. But, it’s actually so much more than that. Think of another DevOps automation tool. But, it’s actually so much more than that. Think of
the underlying principles of DevOps:the underlying principles of DevOps:

9

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

These can all be applied to your infrastructure in the same way they can be applied to
any other code your DevOps team manufactures.

IaC is usually deployed by:

1. DevOps defines and writes the infrastructure specifications;

2. The files are sent to an API, master server, or code repository;

3. An IaC tool such as Terraform creates and configures the specified
computing resources.

With the success of continuous improvement/ continuous development (CI/CD), and
the ability to release intermittent updates and bug fixes, utilising IaC in conjunction
with DevOps practices becomes a holy grail for increasing time to market.

Collaboration Version control

Virtualized tests Continuous
monitoring

Automation

11

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

IaC simplifies change management and easily compensates for frequent changes
being delivered consistently. This removes the need to over-future-proof system
requirements.

Through IaC, your business can benefit from:

 ☑ Consistency - Environments are replicated perfectly and with accurate script
version controls.

 ☑ Risk mitigation - As the environments are within pre-defined containers, ready
for deployment and require a hands-off approach to replication, human error
is replaced by seamless automation.

 ☑ Cost optimization - Improved profit margins due to lower CapEx and less
labour intensity for change management.

 ☑ Agility - With the ease of traceable flexibility, pre-defined hosting, and ready-
to-deploy tools available globally, IaC can improve accuracy and speed to
market.

 ☑ Elasticity - IaC provides unimaginable scalability potential for businesses
without the need to increase CapEx or OpEx.

What are the challenges of IaC?
So we are now on the journey of understanding exactly why your business should
consider IaC, including its ease of reproducible and traceable environments.

But, as with any technological evolution, there are always challenges to consider
too. Whilst Infrastructure as Code has changed the game in hardware virtualization,
before transitioning to this digital transformation it is also important to consider the
following:

• Increased complexity - Whether your IaC scripts are written in HashiCorp
Configuration Language (HCL) or plain Python or Ruby, your DevOps team
still needs to be fluent in this language and declarative approach for
conventions to be accurately applied and traced.

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

What are the benefits of Infrastructure as Code?
Infrastructure changes are expensive. But in order to remain relevant, and even ahead
of the curve, infrastructure becomes a non-negotiable commodity that requires
constant evolution to maintain a competitive advantage. Since physical hardware
is expensive, organizations try their best to future-proof infrastructure as it is
implemented by overbuilding and creating additional investment needs. However,
they typically find that IT evolves so quickly that the future-proofing is already out-of-
date.

10

• Traceability vs. scalability - Whilst IaC opens up a world of scalability and
improved version control, it too becomes a complex beast when hundreds
of developers are involved.

• Feature Lag - Regardless of the IaC tool, as new cloud features are released,
you may be privy to tooling that lacks the access to new cloud features,
unless you extend the functionality yourself.

Choosing an IT partner with expertise to manage these on your behalf is ultimately
the go-to for many established businesses and larger enterprises.

Terraform IaC tool - Use Case

At SPK, we use Terraform as our IaC tool. Terraform is an open-source IaC tool created
by HashiCorp and provides a declarative approach to infrastructure. Terraform is
described as:

Terraform allows infrastructure to be expressed as code in a simple, human readable
language called HCL (HashiCorp Configuration Language). It reads configuration files
and provides an execution plan of changes, which can be reviewed for safety and then
applied and provisioned.

Extensible providers allow Terraform to manage a broad range of resources, including
IaaS, PaaS, SaaS, and hardware services.

13

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

The problem
Our client provides financial services to businesses.

Their primary focus was to develop their financial startup application and ensure
that enough features were incorporated for potential customers to be interested.
The client’s CEO brought SPK on board for our DevOps technical ability, our proven
reputation for rapidly growing environments within regulated industries, and our
ability to handle the application operations to ensure that robust, stable, proactive
monitoring and alerting was in place.

Additionally, it was critical that the application is easily replicated – they would
need demo environments, development environments, test environments, etc. If
there were any inconsistencies between environments, the application might behave
unexpectedly.

Had they not implemented a solution, many hours would have been expended
configuring multiple environments manually. This would have led to the risk of
introducing human error. Furthermore, without having implemented all of the
operational best practices suggested by SPK, their application platform would be
much less stable, and outages would occur as a result.

Identifying the path to success
The client had expressed their primary business objectives. SPK then translated these
into technical requirements. We presented two separate options along with the
pros and cons of each, and with the client’s agreement, we moved forward with the
solution.

The option our client chose to proceed with included Terraform, Terraform Cloud,
Atlassian Bitbucket and Bitbucket Pipelines, ELK Stack, and Grafana. This option
would require two engineers - one of which also played a Primary Customer Program
Manager role.

12

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

https://www.terraform.io
https://www.terraform.io
https://www.terraform.io/

15

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

Top 10 Do’s
and Don’ts of
Infrastructure
as Code

14

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

The solution
SPK began to develop Terraform code based on the client’s current production
environment which was created manually. We inventoried all AWS resources and
redefined them within Terraform. These resources included Elastic Beanstalk
environments, email services, roles, users, DNS records, and SSL certificates. Once the
Terraform code was established, we could create new, complex environments within
minutes.

Shortly thereafter, SPK had a robust operational environment that consisted of
Terraform automation, proactive monitoring and alerting.

Two SPK staff on a fixed monthly fee saved the company roughly $85K per year,
compared to two full-time staff plus benefits and company equity.

17

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

4. Don’t attempt to automate everything
It can be quite satisfying to see entire, complex environments being represented
by a set of source code files. However, some things aren’t well suited to being
controlled by IaC – and it can be a gray area. For example, should application
databases and schemas be created by the IaC tool, or should they be managed
by the application itself?

Perhaps the delineation is that the application will always expect a database
to be present – so that should be created by the IaC tool. But the database
schema is far too dynamic, and is better suited to being managed by the
application. In general, it helps to consider what ultimately will lead to fewer
blockers, and what will help accelerate application development.

5. Foster a self-service approach with the
application developers

DevOps is truly a marriage between Dev and Ops teams. With that comes shared
responsibility, and sometimes these responsibilities can shift between the
teams. For simple changes to the environment, the application developers may
submit a request to the Ops team. But what if they could make these changes
themselves? If platform code and application code are unified, then changing
something like a VM instance type would be a quick one line update and code
commit. No need for application developers to be blocked due to a minor or
low-risk change.

6. Don’t forget to audit cloud spend
With increased automation comes the possibility that cloud costs may spiral
out of control. Consider implementing guardrails such as resource limits, or take
on a trust-but-verify approach by setting up budget alarms or monthly spend
reports.

16

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

1. Use an iterative approach.
Chances are that DevOps automation teams will be introduced into situations
where the applications they are supporting have already been developed to a
degree. These teams do not get the luxury of being able to develop their IaC
from scratch in lock step with the application development.

Therefore, it may seem daunting trying to decide exactly where to start.
Networking configuration is a good candidate. It forms the platform basis, and
may not change much, if at all. Incorporating incremental changes over time
allows for thorough testing cycles as the IaC automation gradually impacts more
of the environment.

2. Be vigilant regarding credential storage

When writing application code, developers go to great lengths to ensure
passwords and credentials aren’t stored alongside the application code, in the
source code repository. Additionally, ensuring that application files have the
correct permissions or are only accessible by the appropriate staff guarantees
that backend systems aren’t being accessed inappropriately.

IaC should be treated the same way. Leverage services such as AWS Secrets
Manager to fetch credentials dynamically at run-time. Or, include SCM post-
commit hooks to ensure that code is scrubbed before check-ins.

3. Leverage cloud-enabled collaboration tools
In the case of Terraform, the state of the systems under control is represented
by a state file. This state file can pose a challenge when a team of individuals
are all attempting to work in the same environment. Terraform Cloud can help
alleviate this by maintaining the state file in a shared repository. Additionally,
each team member can see operations in progress by other team members.
Finally, Terraform Cloud offers great integration into SCM tools whereby
Terraform changes can be applied as soon as a new code change is applied to
the repository.

19

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

9. Extend functionality using external scripts

There are many downsides in relegating to external bash or python scripts
when your IaC tool cannot automate exactly what you’re attempting to do – you
then have disparate code which is more difficult to follow. Ensuring the script is
fully integrated and behaves in a way that is expected by the IaC tool can be a
challenge (risk of stability). Another downside is that you now have another set
of utilities or software libraries to maintain and keep track of.

However, the benefits can outweigh these downsides. Complex tasks can be
easily integrated. Bash and Python are almost universal and can run on almost
any system. And these separate pieces of code are still stored alongside the IaC
code in your SCM, so there’s full visibility and change control.

10. Integrate metrics for BI reporting

Once systems are automated, it is difficult to quantify the amount of time that
was saved, or what the overall benefit to the team was. Consider incorporating
metrics gathering early in the process. That way a baseline can be established
and any improvements to platform deployment time or provisioning time can be
recorded over a longer period.

18

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

7. Consider platform agnostic tools
IaC tools such as CloudFormation have a very deep integration into their
own native cloud platform. This allows for very fine grained control over the
environment and requires less involvement of 3rd party tools. This is not a
problem until you need to automate a resource that is outside of AWS. Consider
platform agnostic tools that can provide good control into a wide variety of
platforms: AWS, Azure, VMware, Docker/Kubernetes.

8. Budget for commercial support for mission-
critical environments

Getting started with open source IaC tools is great, especially for startups who
have yet to reach production and who have limited budgets. However, as the
codebase matures, and an increasing number of users begin relying upon
your application, consider commercial support from the IaC tool provider. The
specialized support can provide quick ROI during a production outage where
revenue is lost by the second.

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

SPK and Associates is focused on improving Engineering with smart information
technology solutions. SPK understands the systems, processes, data and

applications critical to successful product development, and dedicate ourselves
to helping clients build, test, and release products faster and better. For 25 years,
we have helped our customers harness technology to optimize engineering and

accelerate product delivery.

spkaa.com

(888)-310-4540

5011 Scotts Valley Drive
Scotts Valley, CA 95066

info@spkaa.com

W W W . S P K A A . C O M

20

TOP 10 DO’S AND DON’TS OF INFRASTRUCTURE AS CODE

IaC focuses on automating cloud IT infrastructure, but it is not solely about
automation. It provides a tool that seamlessly aligns to all DevOps principles and
enables business growth elasticity without the need to increase CapEx or OpEx. By
implementingInfrastructure-as-Code, businesses can configure, test and deploy with
minimal risk of errors and bugs due to configuration drift. It empowers businesses to
do more, for less cost.

IaC tools such as Terraform provide ease in managing your infrastructure. However,
many clients prefer to partner with external IT expertise to deliver IaaS and IaC. Such
a partnership allows them to quickly adapt to the digital transformation required
whilst still allowing them to compete in today’s market.

SPK and Associates has 20 years of expertise supporting clients in cloud computing
and deliveringInfrastructure-as-Code globally across multiple industries and
businesses of all sizes.

Is it time for your business to scale-up operations without scaling up your CapEx and
OpEx?

Conclusion

mailto:info%40spkaa.com?subject=
https://www.spkaa.com/contact
https://www.spkaa.com/contact
https://www.spkaa.com/contact
mailto:info%40spkaa.com?subject=

