
 

Pitfalls and Tips on Using ClearCase clearfsimport  
 

Ronald Ross 

rross@spkaa.com 

 

When using the ClearCase source control management (SCM) system, we often start by 

importing some new code base.  ClearCase has tools for converting other SCM systems 

such as PVCS, SCCS, RCS, SourceSafe, and CVS. There is also a tool which will import 

code into ClearCase from a flat directory structure.  This is the tool we want to have a 

look at today – clearfsimport. 

 

Our purpose today will be to give three examples of importing from a Windows directory 

structure in to ClearCase, using clearfsimport.  But when doing such an import, 

unexpected results can result if one is not careful.  What follows are examples of one 

successful import, and also two additional imports that have unexpected results. 

 

We will attempt to import a set of four files into an already existing code directory under 

ClearCase.  The files to be imported are shown in the screenshot below.   

 

 
 

We want to take the above four files and add them to the directory under ClearCase 

source control shown in the next screenshot below. 

 

 

 

 

 

 



 

This screenshot shows ClearCase Explorer with a view context displaying a set of 

“training files”.  The first four files are to be added to the directory in the panel on the 

right side of the window.   

 

 
 

Here is the line command that we will use to conduct the code import.  The “\” characters 

simply indicate a line continuation.  The four lines constitute a single command as will be 

seen when we launch the command shown below in a command window.  Note that a log 

file is created containing both the standard and error output by using the redirection 

primitives “2>&1” and “1>”, respectively. 

 

clearfsimport -preview -recurse -rmname -nsetevent -unco -c "Import Training files"  \  

"C:\TrainingStuff\test_comp3\*"  \ 

M:\ccase_TestRatl7_Dev\Training\test_comp3  1>   \ 

C:\Logs\Training_import_pre.txt  2>&1 

 

We will first make a few comments about the parameters being used in the command.  

When initially using clearfsimport, it is usually very useful to include the parameter  

–preview.  This allows the command to be run without actually changing anything, and 

only displaying messages.  The output generated informs the user what would have 

happened if the command had been run “live”, without the –preview option. 

 



 

The –recurse option descends recursively into any subdirectories and acts on files found 

in each subdirectory. 

 

The –rmname acts on directories to remove them if they are present in the target 

ClearCase repository, but not in the source directory. 

 

The –nsetevent option associates the username who is conducting the import with the 

files created in source control under ClearCase. 

 

The –unco option cancels the checkout of an existing file in the target ClearCase 

repository if it is checked out, and then checks it out again to do the file import. 

 

The above description is not intended to be an exhaustive description of the options used, 

but only to provide a brief description and give some context to our use of the command.  

The full set of clearfsimport command options and their descriptions are available at the 

following IBM webpage. 

 

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.ration

al.clearcase.cc_ref.doc/topics/clearfsimport.htm 

 

We now run the command in the Windows command window shown below.  Note that a 

log is created, which we will subsequently examine. 

 

 
 

 

 

 

 



 

Shown below is the log resulting from the clearfsimport command.  Note that all four 

files were successfully imported into the correct directory. 

 

 
 

We now turn to a second and slightly different version of the import command.  The 

command clause that is different from the first import has been given a bold typeface.  

We are now using “test_comp3” instead of “test_comp3/*”.  See the command below 

 

clearfsimport -preview -recurse -rmname -nsetevent -unco -c "Import Training files" \ 

"C:\TrainingStuff\test_comp3" \ 

M:\ccase_TestRatl7_Dev\Training\test_comp3  1> \ 

C:\Logs\Training_import_pre2.txt  2>&1 

 

After running the command, we examine the resulting log file.  Note that the result is 

rather different from the first time we ran the import command.  This time we have 

imported the directory itself, along with the four files, but we have added another 

directory level.  See the additional directory level indicated in red below. 

 

 
 

Why is this?  The explanation is that the first import command specified the files in the 

test_comp3 directory (“test_comp3/*”) while the second import command specified the 

directory itself.  This caused the directory, along with the four files, to be imported into 

the targeted area in ClearCase.   



 

Let’s now look at a third use of the import command.  We have taken the second import 

command and modified it slightly.  The command clause in bold typeface is what was 

modified.  The intent is to again import the four files into the existing ClearCase directory 

and avoid the doubled directory level that we observed in import number two.  The 

command is below. 

 

clearfsimport -preview -recurse -rmname -nsetevent -unco -c "Import Training files" \ 

"C:\TrainingStuff\test_comp3" \ 

M:\ccase_TestRatl7_Dev\Training  1>  \ 

C:\Logs\Training_import_pre3.txt  2>&1 

 

After running the command, we examine the resulting log file, in the screenshot below. 

 

 
 

Again we have something different from what we might have expected.  We have indeed 

imported the four new files into the correct directory (outlined in red), but what else has 



 

happened?  All the other elements in the target ClearCase directory have been removed!  

This is quite likely not what was wanted or anticipated. 

 

What has happened to cause this outcome?  If we take a close look at the syntax of the 

third command, we can see that it is coded in such a way as to REPLACE the directory 

contents to which we initially wanted to add the four files.  So, when the directory 

contents are replaced, we should expect what we observed in the above log file.  That is, 

all the existing files and subdirectories were removed, and the four new files were added.   

 

In some cases, the command behavior of replacing a directory may indeed be what we 

want to happen.  But of course we also always want any commands that we use to do 

what we expect, and not surprise us with a different outcome. 

 

Here are some takeaways from what we observed above. 

 

1. Always be alert to how the clearfsimport command is coded.  As we saw, depending 

on how the source and target parameters are expressed in the command, the results 

may be rather different than what is expected. 

 

2. Always use the –preview option to determine if the action of the command is what 

was intended.  This can help avoid mistakes which might be time consuming to 

correct.  The old adage “measure twice, cut once” can still apply in the world of 

software. 

 

3. Always create a log file to record the results of any import activity.  If the output just 

rolls off the screen, it’s not very useful.  Having a log file enables us to go back and 

carefully examine the results of our activities.  In some cases, even weeks or months 

later, questions may arise that can be answered by referring to the original log file. 

 

This concludes our investigation into the use of the ClearCase clearfsimport command.  

Hopefully this brief introduction to some of the capabilities and pitfalls of the tool is 

helpful to you.  As mentioned above, the IBM website has more complete information on 

all the options for the command.  What we have attempted here is to show in a practical 

way how the command may be used, and how to insure that the results are what you 

want. 


