

Creating Custom Nagios Plugins

Nagios is an invaluable tool to help monitor a customer's infrastructure. Last year, I explained
how easy it was to be able to integrate Network Appliance health checks. In fact, Nagios
provides a plethora of out of the box plugins. Additional plugins are available via the Nagios
Exchange site. The most common applications and protocols can be monitored without any
additional software or custom coding. However, Nagios is just as easily extensible for any checks
that you'd like to perform that aren't readily available.

As part of SPK's network management service, we find that all customers have very specific
environments. Not only is it common to find custom applications, but customers may also require
a varying level of visibility into those apps. For instance, the out of the box check_http script not
only can verify connectivity to a web server, but it also can verify a specific string that should be
returned. But what we if we want dive much deeper? Can we tell if the application throws any
critical back-end errors during the login attempt? What if logins never fail, but performance slowly
degrades? How can we be alerted to such situations?

These situations call for functionality beyond what the out-of-the box plugins can provide. Writing
a custom plugin might sound like a daunting task, but if you follow my simple guidelines and
troubleshooting steps, you'll be off and running in no time. Read further on how you can create
your own custom Nagios plugins.

Basic Nagios Plugin Flow

The basic flow in a typical setup is as follows. When troubleshooting why a plugin doesn’t work
as expected, it’s important to understand the interaction between the Nagios server, the remote
host, and your custom plugin.

- Nagios reads the service definition
- If your service resides on a remote machine, you’re likely using NRPE
- Nagios executes check_nrpe and calls the desired check
- NRPE is spawned on the remote system, running as the nagios or NRPE unprivileged

user.
- NRPE executes the check as defined in nrpe.cfg
- The check defined in nrpe.cfg points to your custom code / script
- Your custom code / script performs its duty, and exits with a return code. It also sends to

standard output the result (OK, WARNING, CRITICAL), along with a short description of
the result.

- NRPE takes the return code along with the short description and relays it back to the
Nagios server

Basic Nagios Plugin Guidelines

Nagios plugins can be written in any language of your choice. Since Nagios simply calls the
plugin and reads its return code, it leaves you free to create the plugin however you wish.
However, there are certain considerations to keep in mind as you develop your plugin.

- When developing your plugin, what may work running as root or as the application owner
may not work when Nagios runs NRPE as its own unprivileged user. In this case, sudo
will need to be leveraged.

- Return codes. Your plugin MUST return one of the 4 following return codes:
o 0 - OK
o 1 - WARNING
o 2 - CRITICAL
o 3 - UNKNOWN

- Standard output: This is what will appear on the Nagios “scoreboard”. Typically you will
want to be as informative as possible. Include some basic statistics into the status line
where applicable. For instance, “OK: Application has no errors”, or “CRITICAL: Found 2
errors in the logs”.

- Your script MUST capture all output, both standard output and standard error. We do not
want any child processes to produce any uncaptured output either. In the end, the
status line that we send to Nagios should be that status line and nothing else.

- Script runtime: Be mindful of how long your plugin takes to execute. If it runs longer than
10 seconds, you may run into timeout issues.

- Script resources: Be mindful of much of an impact your script makes on the target
system. You don’t want your script to be the cause of the poor performance that itself is
reporting!

- Think out of the box when testing your plugin. For example, does your script have
dependencies? How reliable are those dependencies? Could you have written the
plugin without making use of that dependency?

- Always test your plugin before putting it into production. False alarms are the last thing
you want, and when plugins “cry wolf”, their credibility is diminished.

Simple Plugin Example

Let’s follow the process flow I outlined earlier. First, we start with the service description on the
Nagios server. In our example, I want to be alerted when an application’s log contains a critical
error or keyword.

define service{

 use generic-service

 host_name host1, host2

 service_description App Log Check

 is_volatile 0

 check_period 24x7

 max_check_attempts 3

 normal_check_interval 5

 retry_check_interval 1

 contact_groups app_owner_email

 notification_interval 60

 notification_period workhours

 notification_options w,u,c,r

 check_command check_nrpe!check_app_logs

 }

Nothing out of the ordinary here yet. This is a typical service check that utilizes NRPE. Next,
we’ll move on to the target system’s nrpe.cfg:

command[check_app_logs]=sudo /usr/local/nagios/libexec/check_app_logs.sh

Here’s where we define our new custom plugin. In our situation, our app directories are owned
by the app owner, and our unprivileged NRPE user can’t read them. So we’ve created a sudoers
entry to allow this. Finally, we look at our actual sample script:

#!/bin/bash

Script to look for critical errors in the app log

ERROR="OutOfMem"

LOG="/opt/app/logfile.txt"

tail -2000 $LOG | egrep -i $ERROR > /dev/null 2>&1

if [$? -eq 0]; then

 echo "CRITICAL: $ERROR found in log"

 exit 2

else

 echo "OK: Nothing critical found in log"

 exit 0

fi

This example is oversimplified, but it does touch on a few key pieces. Any output is suppressed
(from calling ‘tail’ and piping to grep), and the exit status messages are concise but informative.
Starting with a basic script gives you a good starting point to test from. As you add functionality
and complexity to the script, you can monitor where certain test cases may fail, and where
excessive strain might be put on the system.

Mike Solinap
Sr. Systems Integrator
SPK & Associates

