
 

An Approach to Code Security When Using ClearCase 

Ronald Ross (rross@spkaa.com) 

As most of us already know, the ability of ClearCase to provide code security is 
somewhat limited.  A first line of defense might be to segment project VOBs by 
ClearCase registry region.  This has the effect of a given engineer only seeing the VOBs 
which are registered in that particular region.  However, if the engineer has any kind of 
administrative authority on his/her machine, the registry region on the client machine can 
simply be changed, and all the VOBs in the new region then become visible. 

The other commonly used method is to use the group membership and file permissions to 
enforce a security policy.  If strict control can be maintained over who is a member of a 
particular group, this approach has some chance of success.  One drawback is that the 
granularity of this method is somewhat coarse.  Often certain UCM projects or code 
directories are what need security, but in my opinion it is more effective to apply any 
protections at the VOB level.  Others may have dealt with this more extensively and have 
achieved solutions, but for the purposes of this discussion, we will assume VOB level 
security and nothing more granular. 

For our example, the client machines are using ClearCase 7.0.1.12, and our VOB server 
is RedHat Enterprise Linux (RHEL) 4.  The VOB storage is Network Attached Storage 
(NAS) on a Network Appliances (NetApp) machine.   This kind of mixed environment 
can be a bit tricky, and we might imagine a dual message here.  The implicit first 
message would be – how do we get kind of mixed environment to work, period.  The 
next message, which is our explicit focus, is how do we use this environment to 
successfully implement group security? 

We assume that the following commands have been run against the VOB in question (ex. 
Training) in order to establish security based upon group membership: 

cleartool protectvob  –add_group atria_vid –delete_group <groups,…> /vobs/Training 

cleartool protect  –chgrp atria_vid –chmod 770 –recurse /vobs/Training 

cleartool find .  –all –exec “cleartool protect –chgrp atria_vid –chmod 770 
\”%CLEARCASE_PN%\” “ 

The first command establishes a group in the VOB by which all elements will be 
accessed (atria_vid).  It also removes all other groups which might be present and could 
be used to access files.  (A list of groups to be removed can be obtained with “cleartool 
describe vob:/vobs/Training” in our example). 



 

The second command may not strictly be necessary, but is included for illustrative 
purposes.  If the VOB in question is small, or relatively unpopulated, this may be enough 
to establish the group and file permissions (770) on all elements. 

The third command actually goes out and finds all possible elements (visible or not) and 
applies the same group and permissions evident in command number two. 

Now that we have a VOB that has been protected, let’s have a look at how a client 
machine and username accesses the VOB.  We will first use a username that is 
configured for full security access, and then look at a username that is not configured.  
We will then configure the second username and see the access subsequently enabled. 

First, let’s have a look at what environment variables we should have set.  This is done in 
the Control Panels -> System window.  Select the Advanced tab, and click on 
Environment Variables. 

 



 

The next screenshot below shows the existing environment variables. 

 

Here we have set a User variable:  CLEARCASE_PRIMARY_GROUPS to “ccusers”, 
which will be the default group for any newly created files.  Let’s look at the output 
below of the ClearCase “creds” command to see user and groups we are working with. 



 

 

Here we see our user, “rross”, and the primary group that we previously specified, 
“ccusers”.  Note also that there is a secondary group to which rross belongs – “atria_vid”.  
This is the group that we previously gave ownership to all elements in the \Training 
VOB.   

This is the Windows side of the equation.  But we also must take into account the Unix 
side, when we have a Windows/Linux mixed environment.  Let’s have a look at the 
screenshot below for this. 



 

 

On our Linux VOB server, under /etc/group, we see the entry for our security group – 
atria_vid.  The entry contains the username “rross”, which is a part of the group.  We now 
launch ClearCase Explorer to have a look at how the group ownership is working. 

 

We use a user view to open the Training VOB and have a look at a file contained in it.  
This file, a.txt, is shown with its properties above.  We see that it has group access with 
atria_vid, and owner+group access.  Next we will try to open the file below. 



 

 

We use Notepad to open the file, and we are able to read the contents of the file.  It is also 
possible to checkout, modify and checkin the file, but we will skip the tedium of 
demonstrating this. 

So user “rross” has access to the files.  But now let’s have a look at a different user who 
does not have access, and what we must do to establish access.  The user will be the 
group account – buildxf.  See the group membership in the screenshot below. 

 

 

 



 

 

Here we see user buildxf with our standard primary group already defined.  But we do 
not see a reference to the secondary group – atria_vid.  Let’s bring up ClearCase Explorer 
again and see what happens.  See the screenshot below. 



 

 

Again we access a view and the Training VOB.  However, nothing shows up in the right 
hand Explorer panel.  This user has no authority to read anything.  Remember that we 
have changed all directory (folder) and file permissions to owner+group.  So, let’s take 
the first step toward remedying this.  We go ahead and add buildxf to the Windows group 
atria_vid.  Let’s see the first results of this below. 



 

 

The creds command displays what we saw before, but with the addition of the new 
secondary group – atria_vid.  Let’s see the effect this has now when we again use 
ClearCase Explorer. 

 



 

 

We are now able to see all the files under the Training VOB and its component 
(test_comp3).  We again look at the same file we previously examined with user rross, 
and we see that since buildxf joined the atria_vid group, we now have access to seeing 
the files.  So are we all the way there?  Not quite, it seems.  Have a look at the next 
screenshot below. 



 

 

Above we have attempted to open the file, as before with rross, and examine the contents.  
But we encounter a permissions error!  What is the problem?  In this case we have made 
the user a member of the Windows atria_vid group, but there is a missing piece. The next 
screenshot gives us the resolution to the issue.  Here we have added the user buildxf to 
the Unix group – atria_vid. 

 



 

As with the rross username, buildxf also needs to be made a part of the corresponding 
Unix group to enable full access to the file system.  As a side note, we were told by IBM 
that membership in the Unix group does not matter, but this is different from our 
experience, and what we see in this example.  After adding the user to the Unix version 
of the group, we can see the result below. 

 

It is now possible to fully access the files that are members of the group atria_vid, as seen 
in the screenshot above.  At this point, we have demonstrated the two things that we set 
out to accomplish: 

• We have demonstrated how group membership needs to be set up to enable file 
access when working in a mixed Unix/Linux and Windows environment.   

• We have also demonstrated how to use group membership to establish code security 
and limit the access to only those who have been made members of the approved 
group(s).   

The solution outlined above for code security is not airtight, but it seems quite workable, 
assuming that good control of group membership is possible.  We have heard from 
IBM/Rational that when ClearCase 8.0 is released it will include a more formal and better 
way to control code access.  Perhaps this is overdue, but until IBM/Rational decides to 



 

provide a better security solution, what we have demonstrated here may be the best that is 
available, although others may have better ideas. 

As a final note, there is a last consideration to be aware of when implementing a solution 
like the one demonstrated above.  After permissions are set, and access is allowed, there 
is then the question of how new files are treated when they are added to the VOB.  We 
have defined our solution in terms of all files being owned by a single group.  But new 
files may by default be owned by other groups.  There are two solutions for this: 

• Make sure that every person who is accessing the codebase has a user environment 
variable CLEARCASE_PRIMARY_GROUP set to the correct group, in this case: 
atria_vid 

• Create a postoperative trigger that fires after checkin and changes the group to the 
correct value, and also enforces file permissions, excluding Other from having read 
permission. 

These two solutions are, of course, not mutually exclusive and may be used together.  In 
fact, it’s probably a good idea to at least have the trigger operative to enforce uniformity 
of group membership for all VOB elements.  The users may be working on various 
projects, and setting the CLEARCASE_PRIMARY_GROUP variable may be 
inconvenient in such a situation.   


