EYSPK

and Associates

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

Static Analysis: Improving Quality by Finding Coding Issues As Soon As Possible

Introduction

Many companies utilize static analysis tools in
some fashion. However, we often find they are
not leveraging them to their fullest potential. At
SPK and Associates, we believe in driving quality
up front, at the Engineering Desktop, and not
relying solely on finding issues during QA
verification and validation testing.

In this article we will review one of our customer
experiences with respect to static analysis for
early defect detection/correction.

Review of Static Analysis Concepts
High levels of quality cannot be “tested into”
software. It needs to be aggressively
managed/maintained at all phases of
development. And preventing flaws is far more
cost effective then trying to remove them.

Static Analysis focuses on inspection of source
code to locate defects without actually executing
it. The oldest and most widely known static code
analyzer is lint, the basic C & C++ code scanner
bundled with UNIX.

Dynamic testing (the counterpart to static
analysis) is the traditional verification/validation
process involving the execution of software.
Example: The running of regression tests utilizing
replay scripts/makefiles and golden data for
comparison. See Chart1

Static Analysis vs. Dynamic Testing
Chart 1 [1]

Dynamic Testing on
Object Code &
Executables

» Coverity \I—.)- - Test Regressions

» QAC++ :)
Compiler/Linker
* Klocwaork

» Lint

Static Testing
on Source Code

Some of the more common code issues identified
by Static Analysis Tools include [2]:

e Memory & Resource issues: e.g. dynamically
allocated memory which is not freed, files,
sockets etc. which are not properly
deallocated when no longer used;

e lllegal operations: Division by zero, calling
arithmetic functions with illegal values, over-
or underflow in arithmetic expressions,
addressing arrays out of bounds,
dereferencing of null pointers, freeing already
deallocated memory;

e Dead code and data: Code and data that
cannot be reached or is not used. This may be
only bad coding style, but may also signal
logical errors or misspellings in the code;

e Incomplete code: This includes the use of
uninitialized variables, functions with
unspecified return values (due to e.g. missing
return statements) and incomplete branching
statements (e.g. missing cases in switch
statements or missing else branches in
conditional statements).

wll SPK

and Associates

Looking At Tools

A quick search online will return over three dozen
static analysis tools. Their capabilities range from
local syntax and metrics collection to being able
to analyze programs at a semantic level.

We narrowed down the evaluation to 3 Tools -
Coverity, Programming Research’s QAC/QAC++,
and Klocwork.

Programming Research’s QAC/QAC++ tools easily
supported incremental analysis of source code at
the engineer’s desktop. This enabled the benefit
of early detection/correction, before the
engineer checks their code into CM for system
builds.

PR

Programming Rescarch

However, at the time of the evaluation, we felt
that QAC/QAC++ did not provide deep enough
inter-procedural (whole-program) analysis across
function, file, and module boundaries to achieve
100% path coverage. Additionally QAC/QAC++
generated more false positives and negative
errors than some of the other tools.

Coverity, our second tool in the top 3, was
viewed to be the industry leader based on the
number of checkers used in analysis and a lowest
number of false positive and negative errors.

{) coverity

However, at the time of the evaluation, Coverity
did not easily support desktop incremental static
code analysis, requiring all code to be built in the

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

context of the system. And the existing turn-
around time for the system build and analysis
was taking longer than an overnight run. This
lengthy feedback loop resulted in an inefficient
and reactive development behavior. Preventable
bugs are allowed into code, not caught and
reported till much later. And, the engineer was
faced with remembering the context of the error
of code that may have been updated multiple
times

Our goal was to provide the best of both: Quick
feedback via incremental/desktop analysis along
with excellent coverage and precision (low false
positives). Knowing that neither Coverity nor
PRQA provided this (at the time), we included a
third vendor for consideration (Klocwork) which
did provide both incremental desktop and system
level coverage.

Also, in addition to quick turn-around and
excellent precision, our client was requesting the
ability to have architectural visualization and
code optimization. The purpose was to aide
debugging, code reviews, architecture discovery,
and the understanding of system complexity.
These tools are often bundled with (or have as a
prerequisite) static analysis tools. Both Klocwork
and Coverity offered excellent architecture
visualization applications.

Requirements

Our final static analysis requirements list included

the following:

e High Degree of Completeness
System level deep inter-procedural (whole-
program) analysis across function, file, and
module boundaries.

e [Excellent Precision

High Quality/Meaningful Errors Found
Low False Positives

— Filtering/Tuning/Prioritization of results

EYSPK

and Associates

— Custom Checker Functionality

e Robust Performance
Incremental/Desktop analysis without loss in
precision in under 30 minutes System (level 0)
non-incremental build, analysis/reporting
completed overnight.

e Aligns with Clients Infrastructure
— Supports C, C++

Runs on Linux/Solaris OS

Runs on Virtualized Machines

Farm runs must support LSF

e Lowest cost of ownership possible
— License support of floating licenses
— Minimal IT support
— No dedicated internal expert required
— Low Training Impact (Intuitive)
— Low storage requirements

e Must be a Proven Solution
— Industry top 3 established company
— Extensive Customer References

Evaluation Score Card

We compared the three static analysis tools
against the requirements. Evaluations were done
on two separate products at the client site. The
findings were:

Requirement Coverity | Klocwork | QA C/C++

Completeness System Local & Local
System

Precision Excellent Excellent Average
Performance Average Excellent | Excellent
Infrastructure Achieves | Achieves | Achieves
Alignment
Cost of High Medium Medium
Ownership
Proven Solution Yes Yes Yes
Best Overall Winner
Solution

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

Klocwork distinguished itself as being the most
complete solution at the time, offering excellent
precision and completeness while providing
immediate feedback for R&D as a desktop
engine. Developers exposed to the evaluation
were uniformly positive on Klocwork.

Summary Statement

Static Analysis is a part of the verification testing
flow. There are many tools out there which can
do a reasonable job. However, the tool with the
highest positive impact to reducing defects is the
one that R&D folds into their daily coding process
to catch errors before they are submitted to CM.

Vendor Links:
— www.klocwork.com

— www.coverity.com

— www.programmingresearch.com

References

[1] Giesen, D. Philosophy and Practical
Implementation of Static Analyzer Tools, QA
Systems Technologies BV, (1998), pp. 4.

[2] Emanuelsson, P. and Nilsson, U, A
Comparative Study of Industrial Static Analysis
Tools Analysis, Electronic Notes in Theoretical
Computer Science 217

Carlos Almeida
SPK and Associates
Architect, Software Engineering

www.klocwork.com
www.coverity.com
www.programmingresearch.com

