

Creating Google Charts with Python

This document will describe how to create Google Charts using Python. Let’s take the following
case study: You have an existing script running on a server that periodically pings an internet
host to test latency. The script continuously logs to a file. We’d like to take this data, and make it
available on the web to view visually.

Prerequisites:

• A web server capable of running Python CGI scripts
• The client web browser must have internet access (to access the Google Charts web

service)

Let’s have a look at our sample data. Our existing ping script logs a timestamp, and a latency
value with single decimal precision:

09:30:00 45.8
09:31:00 39.2
09:32:00 55.2
09:33:00 48.1
09:34:00 33.5
09:35:00 70.0
09:36:00 65.5
09:37:00 44.2
09:38:00 49.9

Now for our CGI script.

#!/usr/bin/python

We’ll want the OS to be able to execute this script, and this header will tell the OS which
interpreter to use.

import cgi
import cgitb
cgitb.enable()

You can choose to debug your script from the OS command line, but I prefer to debug directly
from the browser. Importing the cgi and cgitb modules will allow us to view any python errors as
a web page.

from GChartWrapper import *

The GChartWrapper is a python module that simplifies the formatting of the HTTP request. You
can download the GChartWrapper from:

http://code.google.com/p/google-chartwrapper/

filein = "test.data"

Here we are referencing the ping script that logs its data to a file. See the sample data above.

times = []
latency = []

Define 2 separate lists. One will keep track of the timestamps, the other will keep track of the
ping latency times.

thefile = open(filein, "r")

Create a file handle. We only need to open the file in read-only mode.

while thefile:
 line = thefile.readline()
 if len(line) < 2:
 break
 elements = line.split()
 times.append(elements[0])
 latency.append(elements[1])
thefile.close()

Read the file line by line. For each line, we’ll append the first token we find to the times[] list, and
the 2nd token will be appended to the latency[] list.

G = Line(latency, encoding='text')

Instantiate a GChartWrapper object. For this example, we are going to use a simple line chart.

G.axes.type('xxyy')

We want to have a total of 4 axes labels. We initialize that here.

G.axes.label(0, times[0], times[len(times)-1])
G.axes.label(1, 'Time')
G.axes.label(3, 'Milliseconds')

For each of the axes labels, we need to define what they are. The label definitions are indexed
according to the “xxyy” axes type listed above. So the first x axes label will be 0, the 2nd x axes
label is 1, etc.

G.axes.range(2, 0, max(latency))
G.scale(0, max(latency))

By default, Google Charts creates a chart range of 0-100. We want the range to be based on our
actual latency vaules, so we specify a range of zero to whatever the maximum latency is in our
list.

G.legend('Latency')

G.size (500, 200)
G.title("Ping times")

Here we define the chart size, the main title, and the legend label.

print "Content-Type: text/html\n\n"
print ""

Finally, we want our script to output the correct Content-Type HTTP header. The GChartWrapper
object we created when converted to a string, will be the HTTP request we send to Google.
Google returns a PNG image, so we are embedding this in an HTML IMG tag.

Here is the final chart:

And our final code:

#!/usr/bin/python

import cgi
import cgitb
cgitb.enable()

from GChartWrapper import *

filein = "test.data"

times = []
latency = []

thefile = open(filein, "r")
while thefile:
 line = thefile.readline()
 if len(line) < 2:
 break
 elements = line.split()

 times.append(elements[0])
 latency.append(elements[1])
thefile.close()

G = Line(latency, encoding='text')
G.axes.type('xxyy')
G.axes.label(0, times[0], times[len(times)-1])
G.axes.label(1, 'Time')
G.axes.label(3, 'Milliseconds')
G.axes.range(2, 0, max(latency))
G.scale(0, max(latency))
G.legend('Latency')
G.size (500, 200)
G.title("Ping times")

print "Content-Type: text/html\n\n"
print ""

