

How to setup Bacula for a Weekly Backup Job

In this scenario, we have been asked to create a weekly backup job that backups an NFS-
mounted folder named /mnt/database. Our Bacula server is a Linux machine.

Since the database directory is modified every day, we will need to do incremental backups as
well as a full backup once a week.

So, let’s get started and setup this job. I am assuming you’ve installed Bacula on your system and
are using the standard directory for Bacula configuration, /etc/bacula

1. First, we need to create a pool definition for the new job, we will call this one DBPool. In the
/etc/bacula/bacula-dir.conf file, add a definition for the pool like this:

Pool {
 Name = DBPool
 Pool Type = Backup
 Recycle = yes
 RecyclePool = Scratch
 AutoPrune = yes
 Volume Retention = 3 months
 Cleaning Prefix = "CLN"
}

Some quick definitions of these options:

Name refers to what you want to call this pool.
Pool Type should always be Backup for backup jobs. There are other types but that is outside the
scope of this howto.
Recycle = yes tells Bacula that we can recycle volumes in this pool
RecyclePool, this is where Bacula will look to grab recycled volumes automatically. I set this to
Scratch as I have created a Recycle pool named Scratch.
Autoprune allows Bacula to automatically prune jobs and files from this pool after a set amount.
This value is defined elsewhere in the bacula-dir.conf file.
Volume Retention, this allows you to set how long to retain volumes before recycling them. In this
case, 3 months.
Cleaning Prefix, this is needed so cleaning tapes are not used in this pool.

2. Now that we have our pool defined, we will create a FileSet definition. This tells Bacula where
to find the files and sets any specific options for handling the files, (i.e. compression, encryption,
etc..) Here’s the definition:

FileSet {
 Name = "DB"
 Include {
 Options {
 signature = MD5
 }
 File = /mnt/database
 }
}

There are several other options you can include here, but I’m going to keep it simple and just
enable the Signature = MD5 setting which ensures that when restoring files, the file is the correct
file. The MD5 hash is stored in the Bacula database and compared when restoring files. If you
want to add more options, feel free to reference the Bacula Reference Guide which explains
these further.

3. Next we need to set the Schedule definition for this job. This is what tells Bacula when to run
this job. Since we’ve been given the requirement to do this backup daily with a full backup weekly,
we can set a definition like this to handle that:

Schedule {
 Name = "DatabaseBackup"
 Run = Level=Incremental sun-fri at 00:00
 Run = Level=Full saturday at 00:00
}

This is a basic example, and of course you can tweak the time it runs, but it shows you how to do
a basic weekly incremental/full backup.

4. Next we need to establish the Job definitions, or JobDefs for this. These are the default
priorities, schedule, device to backup to, etc.. for a job. Here is a simple JobDefs for this sample
job:

JobDefs {
 Name = "DBDefs"
 Type = Backup
 Client = linuxbackup-fd
 FileSet = "DB"
 Schedule = "DatabaseBackup"
 Storage = TapeLibrary1
 Messages = Standard
 Pool = DBPool
 Priority = 10
 Write Bootstrap = "/var/bacula/working/%c.bsr"
}

Again, these can be customized further, but this is a basic default option set for this job. I like to
do put these rarely-changing parameters in a JobDefs definition instead of a Job definition which
we’ll tackle next.

5. Finally, we need to create the actual Job definition. This is the meat and potatoes for
everything. Here’s the Job definition I will use for this job:

Job {
 Name = "DB_Backup"
 Type = Backup
 JobDefs = "DBDefs"
 Enabled = yes
 Maximum Concurrent Jobs = 1
}

With this Job definition in place, we can load up the Bacula console with the bconsole command,
type in reload to reload the bacula-dir.conf file and now we should have a new job set to run at
midnight. On it’s initial run it will do a full backup to set a baseline, then it will start on the
incrementals and weekly full backups.

